どうぞ参考にしてください。
これを読むと少し落ち着くのではないでしょうか。
私も識者から聞いていましたし、海外のメディアも日本のメディア同様煽っていますが、海外の識者は冷静にみていることも海外のサイトでみて落ち着いたものでした。
これを読むとそれが分かります。
LM-7提供:A Successful Failure
2011年03月14日19時23分
3月12日に東北・東日本を襲ったM9.0という未曽有の大地震は甚大な被害をもたした。未だ被害の全容は明らかではないが、亡くなった方々のご冥福を祈ると共に、現在不都合な生活を強いられている方々が1日も早く元の平穏な生活に戻られることを願う。
その中で、福島原子力発電所に大きな問題が発生し、現時点で福島第一原子力発電所の半径20km、福島第二原子力発電所の半径10kmに避難指示が出ている。M9.0という設計想定を大きく超える地震にあって、東京電力による必死の制御が行われている。
一方で、いたずらに不安を煽るような報道、言説などが見られるのもまた事実だ。正しい科学知識を持って、今のリスクを正確に把握し、それに応じた対応を行わなくてはならない。
正確な知識を得るには次が役に立つ。
• 早野教授のまとめ・東大原子力系卒業生および有志協力チーム
• 原発に関するQ&Aまとめ | サイエンス・メディア・センター
さらに、Fukushima Nuclear Accident – a simple and accurate explanation(オリジナルはWhy I am not worried about Japan’s nuclear reactors.)においてMIT技術者であるDr. Josef Oehmenによる分かりやすい解説が紹介されていたので、以下に紹介したい。長文だが、地球上のあらゆるジャーナリストよりも詳しくなれるそうだ。
私は3月12日に日本で起こっているいくつかのトラブル──日本の原子炉の安全性──に関して心の平穏を与えるために、この文章を書いている。率直に言って状況は深刻だが、コントロール下にある。そしてこの文章は長い。しかし、この文章を読むことによってこの惑星に一緒に住むあらゆるジャーナリストよりも原子力発電所について詳しくなるだろう。
今までそしてこれからも深刻な放射能物質の漏洩は決して起こらない。
深刻なという意味は長距離フライトや自然放射能レベルが高い特定の地域で栽培された麦で作られたビールを飲むときに受けることになる放射能レベルという意味だ。
私は地震後のこの事故に関する全てのニュースに目を通した。正確で誤りのないレポートはただの一つも無かった。日本の危機報道における弱点でもある。誤りが含まれるので、私は偏った反原発記事を参照しない──これはこの頃非常によくあることだ。誤りの中には、物理学や自然法則に関するあからさまな誤り、原子炉が建築され運用される方法に関する基礎的・基本的理解の明らかな不足による事実の重大な誤認も含まれる。私は各パラグラフに誤りが含まれるCNNの3ページのレポートを読んだことがある。
なにが起こっているかを見る前にまずいくつかの基礎を説明しよう。
福島原子力発電所の構造
福島原子力発電所は沸騰水型原子炉(BWR)と呼ばれる。沸騰水型原子炉は圧力釜に似ている。核燃料は水を温め、水が沸騰し蒸気を作り、蒸気がタービンを回し、電気を作る。蒸気は冷却され、水に戻され、水は再度核燃料により加熱される。圧力釜はだいたい250℃で動作する。
核燃料は酸化ウランである。酸化ウランは約3000℃の高い融点を持つセラミックだ。燃料はペレット(レゴブロックサイズの小さなシリンダを想像すると良い)に成形される。これらのペレットは2200℃の融点を持つジルコニウムで作られた長いチューブの中に挿入され、固く密閉される。こうして組み立てられたものが燃料棒(fuel rod)と呼ばれる。燃料棒はまとめられ燃料集合体にされる。多くの燃料集合体が原子炉の中に配置される。全ての燃料集合体をまとめて炉心(the core)となる。
ジルコニウムのケースが第一の格納容器だ。これは放射能燃料を外界から遮断する。
炉心は圧力容器(pressure vessels)の中に配置される。これは先に述べた圧力釜だ。圧力容器は第二の格納容器である。これは釜の頑丈な部分の一つであり、数百℃の炉心が安全に格納されるように設計されている。これはいくつかの点で冷却を回復させるシナリオに関連する。
原子炉の全体のハードウェア──圧力容器と全てのパイプ、ポンプ、冷却(水)蓄積は、第三の格納容器に格納されている。第三の格納容器は分厚い鋼鉄で完全に密閉されている。第三の格納容器はただひとつの目的のために設計され製造されている。完全な炉心溶融を無期限に封じ込めるためだ。この目的のために、大きく厚いコンクリート製のたらいが圧力容器(第二の格納容器)の下に成形され、第三の格納容器の中は全て黒鉛で満たされる。これがいわゆるコアキャッチャ(core catcher)だ。もし炉心が溶融し圧力容器が爆発(最終的には融ける)したとしても、コアキャッチャが溶け出した燃料や他のすべてのものを捕える。このように核燃料が散開することで冷却されるのだ。
原子炉の基礎
ウラン燃料は核分裂によって熱を発生する。重いウラン原子はより軽い原子に分裂する。核分裂によって熱と共に中性子(原子を構成する一つの粒子)を生成する。中性子が他のウラン原子に衝突すると、ウラン原子は分裂し、さらなる中性子等を生成する。これが核分裂連鎖反応と呼ばれる。
多くの燃料棒を他と隣接するように単純にまとめると、急速に過熱が進み、約45分後に燃料棒の溶解に至る。ここで原子炉の中の核燃料は「決して」核爆弾のタイプの核爆発を起こすことは無いということに言及しておく価値があるだろう。核爆弾を作ることは実際とても難しい(イランに訊いて下さい!)チェルノブイリでは、過度の圧力上昇によって爆発が生じ、水素爆発と全ての格納容器の破裂、融解した原子炉材料が環境中に放出された(ダーティボムだ)。何故同じことが日本で起きないかは次に述べる。
核分裂連鎖反応をコントロールするために、原子炉のオペレータはいわゆる制御棒(control rods)を利用する。制御棒は中性子を吸収し、即座に連鎖反応を止める。原子炉はこのように作られているため、オペレーションが正常に行われている場合には、全ての制御棒が外される。炉心が熱を生成するのと同じ速度で、冷却水が熱を取り除くのだ(そして熱を蒸気と電気に変える)。正常運用時には250℃程度と十分な余裕がある。
制御棒を挿入し核分裂連鎖反応を停止させた後も、炉心は熱を放出し続ける部分に課題がある。ウランは連鎖反応を止めているが、多くの中間生成物である放射能元素がウランの分裂過程で発生する。特にセシウムとヨウ素同位体がメインとなるが、これらの放射性元素は最終的により軽い原子に分裂して、放射性物質では無くなる。これらの元素は崩壊の間熱を発生し続ける。熱がウランから再生成されることはないため(制御棒挿入後はウランの崩壊はストップしている)、熱はだんだん下がって行き、全ての中間放射性元素が使い果たされるまで、数日かけて冷えていく。
この残留熱が現在の頭痛の種だ。
一つ目の種類の放射性元素は燃料棒のウランとウランが崩壊するときの中間放射性元素であって、共に燃料棒の中にある(セシウムとヨウ素)。
(つづく)